Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural Insights into 6-Hydroxypseudooxynicotine Amine Oxidase from Pseudomonas geniculata N1, the Key Enzyme Involved in Nicotine Degradation.

Identifieur interne : 000037 ( Main/Exploration ); précédent : 000036; suivant : 000038

Structural Insights into 6-Hydroxypseudooxynicotine Amine Oxidase from Pseudomonas geniculata N1, the Key Enzyme Involved in Nicotine Degradation.

Auteurs : Gongquan Liu [République populaire de Chine] ; Weiwei Wang [République populaire de Chine] ; Fangyuan He [République populaire de Chine] ; Peng Zhang [République populaire de Chine] ; Ping Xu [République populaire de Chine] ; Hongzhi Tang [République populaire de Chine]

Source :

RBID : pubmed:32737127

Abstract

Bacteria degrade nicotine mainly using pyridine and pyrrolidine pathways. Previously, we discovered a hybrid of the pyridine and pyrrolidine pathways (the VPP pathway) in Pseudomonas geniculata N1 and characterized its key enzyme, 6-hydroxypseudooxynicotine amine oxidase (HisD). It catalyzes oxidative deamination of 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoylsemialdehyde-pyridine, which is the crucial step connecting upstream and downstream portions of the VPP pathway. We determined the crystal structure of wild-type HisD to 2.6 Å. HisD is a monomer that contains a flavin mononucleotide, an iron-sulfur cluster, and ADP. On the basis of sequence alignment and structure comparison, a difference has been found among HisD, closely related trimethylamine dehydrogenase (TMADH), and histamine dehydrogenase (HADH). The flavin mononucleotide (FMN) cofactor is not covalently bound to any residue, and the FMN isoalloxazine ring is planar in HisD compared to TMADH or HADH, which forms a 6-S-cysteinyl flavin mononucleotide cofactor and has an FMN isoalloxazine ring in a "butterfly bend" conformation. Based on the structure, docking study, and site-directed mutagenesis, the residues Glu60, Tyr170, Asp262, and Trp263 may be involved in substrate binding. The expanded understanding of the substrate binding mode from this study may guide rational engineering of such enzymes for biodegradation of potential pollutants or for bioconversion to generate desired products.IMPORTANCE Nicotine is a major tobacco alkaloid in tobacco waste. Pyridine and pyrrolidine pathways are the two best-elucidated nicotine metabolic pathways; Pseudomonas geniculata N1 catabolizes nicotine via a hybrid between the pyridine and pyrrolidine pathways. The crucial enzyme, 6-hydroxypseudooxynicotine amine oxidase (HisD), links the upstream and downstream portions of the VPP pathway; however, there is little structural information about this important enzyme. In this study, we determined the crystal structure of HisD from Pseudomonas geniculata N1. Its basic insights about the structure may help us to guide the engineering of such enzymes for bioremediation and bioconversion applications.

DOI: 10.1128/AEM.01559-20
PubMed: 32737127
PubMed Central: PMC7499033


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural Insights into 6-Hydroxypseudooxynicotine Amine Oxidase from
<i>Pseudomonas geniculata</i>
N1, the Key Enzyme Involved in Nicotine Degradation.</title>
<author>
<name sortKey="Liu, Gongquan" sort="Liu, Gongquan" uniqKey="Liu G" first="Gongquan" last="Liu">Gongquan Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Weiwei" sort="Wang, Weiwei" uniqKey="Wang W" first="Weiwei" last="Wang">Weiwei Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="He, Fangyuan" sort="He, Fangyuan" uniqKey="He F" first="Fangyuan" last="He">Fangyuan He</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Peng" sort="Zhang, Peng" uniqKey="Zhang P" first="Peng" last="Zhang">Peng Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Ping" sort="Xu, Ping" uniqKey="Xu P" first="Ping" last="Xu">Ping Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tang, Hongzhi" sort="Tang, Hongzhi" uniqKey="Tang H" first="Hongzhi" last="Tang">Hongzhi Tang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China tanghongzhi@sjtu.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32737127</idno>
<idno type="pmid">32737127</idno>
<idno type="doi">10.1128/AEM.01559-20</idno>
<idno type="pmc">PMC7499033</idno>
<idno type="wicri:Area/Main/Corpus">000054</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000054</idno>
<idno type="wicri:Area/Main/Curation">000054</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000054</idno>
<idno type="wicri:Area/Main/Exploration">000054</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural Insights into 6-Hydroxypseudooxynicotine Amine Oxidase from
<i>Pseudomonas geniculata</i>
N1, the Key Enzyme Involved in Nicotine Degradation.</title>
<author>
<name sortKey="Liu, Gongquan" sort="Liu, Gongquan" uniqKey="Liu G" first="Gongquan" last="Liu">Gongquan Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Weiwei" sort="Wang, Weiwei" uniqKey="Wang W" first="Weiwei" last="Wang">Weiwei Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="He, Fangyuan" sort="He, Fangyuan" uniqKey="He F" first="Fangyuan" last="He">Fangyuan He</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Peng" sort="Zhang, Peng" uniqKey="Zhang P" first="Peng" last="Zhang">Peng Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Ping" sort="Xu, Ping" uniqKey="Xu P" first="Ping" last="Xu">Ping Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tang, Hongzhi" sort="Tang, Hongzhi" uniqKey="Tang H" first="Hongzhi" last="Tang">Hongzhi Tang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China tanghongzhi@sjtu.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bacteria degrade nicotine mainly using pyridine and pyrrolidine pathways. Previously, we discovered a hybrid of the pyridine and pyrrolidine pathways (the VPP pathway) in
<i>Pseudomonas geniculata</i>
N1 and characterized its key enzyme, 6-hydroxypseudooxynicotine amine oxidase (HisD). It catalyzes oxidative deamination of 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoylsemialdehyde-pyridine, which is the crucial step connecting upstream and downstream portions of the VPP pathway. We determined the crystal structure of wild-type HisD to 2.6 Å. HisD is a monomer that contains a flavin mononucleotide, an iron-sulfur cluster, and ADP. On the basis of sequence alignment and structure comparison, a difference has been found among HisD, closely related trimethylamine dehydrogenase (TMADH), and histamine dehydrogenase (HADH). The flavin mononucleotide (FMN) cofactor is not covalently bound to any residue, and the FMN isoalloxazine ring is planar in HisD compared to TMADH or HADH, which forms a 6-
<i>S</i>
-cysteinyl flavin mononucleotide cofactor and has an FMN isoalloxazine ring in a "butterfly bend" conformation. Based on the structure, docking study, and site-directed mutagenesis, the residues Glu60, Tyr170, Asp262, and Trp263 may be involved in substrate binding. The expanded understanding of the substrate binding mode from this study may guide rational engineering of such enzymes for biodegradation of potential pollutants or for bioconversion to generate desired products.
<b>IMPORTANCE</b>
Nicotine is a major tobacco alkaloid in tobacco waste. Pyridine and pyrrolidine pathways are the two best-elucidated nicotine metabolic pathways;
<i>Pseudomonas geniculata</i>
N1 catabolizes nicotine via a hybrid between the pyridine and pyrrolidine pathways. The crucial enzyme, 6-hydroxypseudooxynicotine amine oxidase (HisD), links the upstream and downstream portions of the VPP pathway; however, there is little structural information about this important enzyme. In this study, we determined the crystal structure of HisD from
<i>Pseudomonas geniculata</i>
N1. Its basic insights about the structure may help us to guide the engineering of such enzymes for bioremediation and bioconversion applications.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32737127</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>86</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2020</Year>
<Month>09</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural Insights into 6-Hydroxypseudooxynicotine Amine Oxidase from
<i>Pseudomonas geniculata</i>
N1, the Key Enzyme Involved in Nicotine Degradation.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01559-20</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.01559-20</ELocationID>
<Abstract>
<AbstractText>Bacteria degrade nicotine mainly using pyridine and pyrrolidine pathways. Previously, we discovered a hybrid of the pyridine and pyrrolidine pathways (the VPP pathway) in
<i>Pseudomonas geniculata</i>
N1 and characterized its key enzyme, 6-hydroxypseudooxynicotine amine oxidase (HisD). It catalyzes oxidative deamination of 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoylsemialdehyde-pyridine, which is the crucial step connecting upstream and downstream portions of the VPP pathway. We determined the crystal structure of wild-type HisD to 2.6 Å. HisD is a monomer that contains a flavin mononucleotide, an iron-sulfur cluster, and ADP. On the basis of sequence alignment and structure comparison, a difference has been found among HisD, closely related trimethylamine dehydrogenase (TMADH), and histamine dehydrogenase (HADH). The flavin mononucleotide (FMN) cofactor is not covalently bound to any residue, and the FMN isoalloxazine ring is planar in HisD compared to TMADH or HADH, which forms a 6-
<i>S</i>
-cysteinyl flavin mononucleotide cofactor and has an FMN isoalloxazine ring in a "butterfly bend" conformation. Based on the structure, docking study, and site-directed mutagenesis, the residues Glu60, Tyr170, Asp262, and Trp263 may be involved in substrate binding. The expanded understanding of the substrate binding mode from this study may guide rational engineering of such enzymes for biodegradation of potential pollutants or for bioconversion to generate desired products.
<b>IMPORTANCE</b>
Nicotine is a major tobacco alkaloid in tobacco waste. Pyridine and pyrrolidine pathways are the two best-elucidated nicotine metabolic pathways;
<i>Pseudomonas geniculata</i>
N1 catabolizes nicotine via a hybrid between the pyridine and pyrrolidine pathways. The crucial enzyme, 6-hydroxypseudooxynicotine amine oxidase (HisD), links the upstream and downstream portions of the VPP pathway; however, there is little structural information about this important enzyme. In this study, we determined the crystal structure of HisD from
<i>Pseudomonas geniculata</i>
N1. Its basic insights about the structure may help us to guide the engineering of such enzymes for bioremediation and bioconversion applications.</AbstractText>
<CopyrightInformation>Copyright © 2020 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Gongquan</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Weiwei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Fangyuan</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Peng</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Ping</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Hongzhi</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">0000-0002-7743-0186</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China tanghongzhi@sjtu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">6-hydroxypseudooxynicotine amine oxidase</Keyword>
<Keyword MajorTopicYN="Y">VPP pathway</Keyword>
<Keyword MajorTopicYN="Y">nicotine</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2021</Year>
<Month>03</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32737127</ArticleId>
<ArticleId IdType="pii">AEM.01559-20</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.01559-20</ArticleId>
<ArticleId IdType="pmc">PMC7499033</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Dec;81(24):8330-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26407884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 May 7;274(19):13155-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10224070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Jan;81(1):272-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25344232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1991 May 15;287(1):97-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1897998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 Nov 15;261(32):15140-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3771568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Apr 5;267(10):6611-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1551870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Aug 8;39(31):9188-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10924112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Nov 16;276(46):42887-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2000 Aug 15;189(2):183-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10930735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1979 Dec 25;18(26):5770-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">518869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Aug 13;285(33):25782-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20538584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Handb Exp Pharmacol. 2009;(192):29-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19184645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2016 Jan 04;82(6):1745-1755</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26729714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2006 Jan;69(5):493-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16333621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2003 Mar;10(3):219-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12567183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tob Control. 1999 Spring;8(1):75-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10465821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Mar 16;492(3):193-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11257493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11055-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19549881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 1985 Jul;234(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4009494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2009 Dec;30(16):2785-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19399780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2184-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2014 Mar;91(5):1009-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24397579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2008 Mar;72(3):786-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18323648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013 Oct;9(10):e1003923</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24204321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1995 Nov;20(11):478-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8578593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Aug;62(Pt 8):859-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16855301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 May 23;379(1):94-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18440023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tob Control. 1998 Autumn;7(3):281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9825424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2013 Mar;87(6):1237-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23347155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Nov 11;286(45):39179-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21949128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Mar 23;367(2):409-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17275835</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Liu, Gongquan" sort="Liu, Gongquan" uniqKey="Liu G" first="Gongquan" last="Liu">Gongquan Liu</name>
</noRegion>
<name sortKey="He, Fangyuan" sort="He, Fangyuan" uniqKey="He F" first="Fangyuan" last="He">Fangyuan He</name>
<name sortKey="Tang, Hongzhi" sort="Tang, Hongzhi" uniqKey="Tang H" first="Hongzhi" last="Tang">Hongzhi Tang</name>
<name sortKey="Wang, Weiwei" sort="Wang, Weiwei" uniqKey="Wang W" first="Weiwei" last="Wang">Weiwei Wang</name>
<name sortKey="Xu, Ping" sort="Xu, Ping" uniqKey="Xu P" first="Ping" last="Xu">Ping Xu</name>
<name sortKey="Zhang, Peng" sort="Zhang, Peng" uniqKey="Zhang P" first="Peng" last="Zhang">Peng Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000037 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000037 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32737127
   |texte=   Structural Insights into 6-Hydroxypseudooxynicotine Amine Oxidase from Pseudomonas geniculata N1, the Key Enzyme Involved in Nicotine Degradation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32737127" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020